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SINGLE-BLOCK NAVIER-STOKES INTEGRATOR

P. A. Jacobs 1

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

ABSTRACT

This report describes a program for the time-integration of the Navier-Stokes equations

on a two-dimensional structured mesh. The flow geometry may be either planar or axisym-

metric. The unusual features of this program are that it is written in C and makes extensive

use of sophisticated data structures to encapsulate the data. The idea of writing the code

this way is to make it easier (than traditional FORTRAN codes) to "parallelize" for the

Multiple-Instruction-Multiple-Data style of parallel computer.

The integral form of the governing equations are given for cartesian coordinates and then

the particular discretization used in the code is described. A derivation of the axisymmetric

equations is given in an appendix. The full version of the code describes a flow domain as a set

of abutting blocks, each consisting of a tensor-product mesh of quadrilateral cells. However,

this report considers only the single-block version of the code. The flow field is recorded

as cell-average values at cell centres and explicit time stepping is used to update conserved

quantities. MUSCL-type interpolation and a three-stage Riemann solver are used to calculate

inviscid fluxes across cell faces while central differences (via the divergence theorem) are used

to calculate the viscous fluxes. The Riemann solver is suitable for flows with very strong

shocks and does not require the entropy fix as applied to the Roe-type solvers. Because

the code is intended to be a test-bed for implementation on parallel computers, the coding

details are described in some detail.

A set of test problems is also included. These exercise various parts of the code and

should be useful for both validation and performance measurements of the (future) parallel

implementations.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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Nomenclature, Units

A : (x, y)-plane cell area
A : data structure name

a : local speed of sound, m/s

Cp : coefficient of heat capacity (constant P), J/kg

C. : coefficient of heat capacity (constant volume), J/kg
D : molecular diffusion coefficient

E : total energy (internal + kinetic), J/kg

e : specific internal energy, J/kg
: unit vector

F : algebraic vector of x-component fluxes

f : species mass fraction

G : algebraic vector of y-component fluxes

h : specific enthalpy, J/kg

k : coefficient of thermal conductivity

L : length of interface in the (x, y)-plane
n : direction cosine

fi : unit normal vector

P : pressure, Pa

Pr • Prandtl number, (Cp#/k)

Q : algebraic vector of source terms

q : heat flux

R • gas constant, J/kg/K

Re : Reynolds number

r • radial coordinate, m

S : control surface of the cell

T : temperature, K

t : time, s

At • time step, s

U : algebraic vector of conserved quantities
: Riemann invariant

u : x-component of velocity, m/s

v : y-component of velocity, m/s

V : diffusion velocity

ws : wave speed used in the Riemann solver

x : x-coordinate, rn

y : y-coordinate, m

z : z-coordinate, m
Z : intermediate variable used in the Riemann solver



a : weighting function

/3 : compression parameter in the MUSCL interpolation

p : density, kg/m 3

7 : ratio of specific heats

: MUSCL interpolation parameter

A : second coefficient of Viscosity

r : shear stress, Pa

# : coefficient of viscosity, Pa.s

¢ : half-angle for the axisymmetric cells, radians

0 : angular coordinate, radians

f_ : cell volume, m 3

_i : volume per radian for the axisymmetric cell

_ABCD °A°B

: cell-averaged value

: OA OB -J- 06, OB -'b OD oc + oD OA

Superscripts

n : time level or iteration level

• : intermediate states for the Riemann solver

: secondary cell identifier

Subscripts

A,B,C,D

i,j
is

j4-!
2

MIN

N, S, E, W

n

l

v

x,9

0

L,R

: primary-cell vertices

: celI-centre indices

: species index

• "vertical" interface

i "_horizontal" interface

: minimum allowable value

: North, South, East, West interface or boundary

: normal to interface

: tangent to interface

: viscous contribution

: cartesian components

: z=0or0=0plane

: left state, right state



1 Introduction

In recent years the proliferation of relatively fast computers has popularized the direct cal-

culation of viscous, compressible flows in a time-accurate manner. In some situations, such

as the transient hypersonic flow over a model in a shock-tunnel, numerical simulation is

the only way to extract detailed information about the flow field. Such computations are

very demanding and require computational resources that far exceed those available on a

single-processor computer. Hence, flow solvers running on parallel computers are of great

interest.

This report describes a code (and set of routines) that integrate the Navier-Stokes equa-

tions in a two-dimensional flow domain. Only a single block version of the code using a

"tensor product" (or structured) grid is considered here. The multiblock and parallel exten-

sions will be the subjects of future work.

The code is based on the standard cell-centred time-dependent finite-volume formulation

as described in [1]- [6]. The governing equations are expressed in integral form over arbitrary

quadrilateral cells with the time rate of change of conserved quantities in each cell specified

as a summation of the fluxes through the cell interfaces. The fluxes are composed of separate

inviscid and viscous components. The inviscid components are computed with a Riemann

solver while the viscous fluxes are calculated by application of the divergence theorem.

Section 2 describes the governing equations and programming details for two-dimensional

geometries while the governing equations for axisymmetric geometries are given in Appendix

A. A set of test cases, designed to exercise various features of the code, is then described in

Section 3. These test cases may be used to validate changes made to the code when porting

it to different computer architectures.
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2 Governing Equations

The integral form of the two-dimensional Navier-Stokes equations in cartesian coordinates

can be expressed as ::

0
_//n Udxdy + /s(F-F_)dY- Is (G-G_)dx,= //a Q dxdy (1)

where

U = pv

pE

p fiB

is the algebraic vector of conserved quantities,

F

are the inviscid flux vectors,
; _2 \ i

(2)

pu

pu 2 + P

pvu

pEu + Pu

PfisU

V __

pv

puv

pv 2 + P

pEv + Pv

pfisV

(3)

0

_z

ry_

T_U + rwv + q_

, G_

0

Tz_

vuv

r_vu + Tyyv + qv

Pfi, W,i,

, (4)

are the Viscous flux vectors and Q is an algebraic vector of source terms. 3' is the control

surface bounding the control volume ft. These equations specify the conservation of mass,

momentum, energy and the conservation of mass for the individual species in the control

volume. They are supplemented by the equation of state which relates the pressure to the

density and internal energy as

P = P(p, e) (5)

For a calorically perfect gas, we use

P=P(7-1)e , (6)

while, for air in chemical equilibrium, we use the curve-fits in [7]. The viscous stresses are

given by

-r= = 2_,_+_ _+ ,



= ,

T_y = %_ = bu + , (7)

where # and A are the first and second coefficients of viscosity. The viscous heat flux is

q_ ----- k aT/am 4- p _ hi,fi, V:_,,, ,

qy = k OT/Oy + p y]_ hisfi, Vy,i, (8)

Currently, the code convects the species without considering their diffusion (i.e. V_,;, =

Vu,_, = 0). For air, viscosity is evaluated using Sutherland's law

/t = 1.458 x 10 -6 Tv_
T + 110.4 ' (9)

where T is in degrees Kelvin and # is in Pa.s. Also, Stokes' hypothesis (of zero bulk viscosity)

is invoked to give $ = -=-# and a constant Prandtl number (Pr = 0.72) is used to evaluatea

the coefficient

k = C;,,# (10)
Pr

For two-dimensional flow without heat sources or chemistry, the source terms in Q are set

to zero. For axisymmetric flow, equations (1)- (4) and (7) are replaced by their axisymmetric

counterparts discussed in Appendix A.

2.1 Spatial Discretization and Data Storage

The governing equations (1) - (4) are applied to straight-edged quadrilateral cells as shown

in Fig. 1. Note that the bounding contour S consists of 4 line segments in the (x, y)-plane

and (for 2D geometry) the cell extends 1 unit in the z-direction. A cell-centred discretization

is used in which cell-averaged values < U > are associated with the "primary" cell centres.

The vertices are labelled A - D and the line integrals in equation (1) (which are taken in

the usual counter-clockwise direction) are approximated using the midpoint rule. Thus, the

semi-discrete equations can be expressed as

d<U> +-_1 _ 1 _ (G-G,,) (x,--XA) =<Q> , (11)at (F- (Y'-uA)--5
ABCD

where the summations are over the 4 sides of the cell. Given the current flow state and a

procedure for computing the average fluxes at the midpoints of the interfaces, equation (11)

may the integrated in time as an initial value problem.

7



The flow domain is divided into a numberof blocks with the data for eachblock stored

in a singledata structure asdefined in Appendix C. Currently, the flow domain consists of

a single block. The data structure (labelled A, say) includes both geometry and flow data

and flags for boundary conditions.

The structured grid is specified as a tw0:dlmensionai array 0fprlmary ceils with i,j indices

ranging from irnin to imax and jmln to j,,,a, respectively. These cells are also called "active"

cells (as opposed to "ghost" cells which are used to implement boundary conditions). Using

the C language syntax, the density in cell i,j is accessed as A.Ctr[i][j].rho. Here A.Ctr

is a pointer to an array of pointers, each of which points to a one-dimenslonai array. See

Fig. 2 for a schematic of the data storage. Nonzero values of imi_ and jmi,_ allow storage of

ghost cells without the use negative indices or index translation. For convenience, the cell

interfaces are labelled "North", "South", "East" and "West". The domain boundaries are

labelled "North", "South", *'East" and "West" also, and are adjacent to cells with j = jr_a,,

j = jmln, i = im_ and i = imin respectively.

Referring to Fig. I, the geometry of the cell i,j is defined by its vertices which are

specified as (x,y) coordinate pairs. The vertices A, B, C, D are indexed as A.Vtx[i][j- 1],

A.Vtx[i][j], A.Vtz[i- 1][j], and A.Vtz[i- 1][j - 1] respectively. The North and South

("horizontal") interfaces are indexed as A.HF[i][j] and A.HF[i][j - 1] while the West and

East ("vertical") interfaces are indexed as A.VF[i- 1][j] and A.VF[i][j] respectively.

The cell volume is computed (via an application of the divergence theorem) as

a = /_ xdy, (12)
J5 i,j

where Si,j is the bounding contour for the cell in the (x,y)-plane. This expression is dis-

cretized as : :
1

ABCD

Note that unit depth has been assumed for the z-direction and the area of the cell in the

(x,y)-plane A_,j = f_,j. Cell averages of both the primary variables (p,u,v, e,p,T) and the

conserved variables (p, pu, pv, pE) are associated with the cell "centre" or "centroid". The

coordinates of the cell centre given by

1

xct_ - Ai,j/Lxdxdy ,

1

YCtr - A,,jf£ydxdy,
(14)

|



which are approximated as

• 1

xc,_ = g }2 (xB+ _A)2(YB-- VA)/A,,j ,
ABCD

1

yc,_ = -g _ (y_+ yA)(x_+ xA)(_. - yA) /A,,j , (15)
ABCD

after application of the divergence theorem.

An array of "secondary" cells is also defined (see Fig. 3) using the primary cell centres as

the new vertices. These secondary cells are used in the calculation of the spatial derivatives

required by the viscous stresses (7).

2.2 Inviscid Flux Calculation

The purpose of the inviscid flux routine is to provide estimates for the components of F

and G in equation (3) at each cell interface for each time step. This is achieved by first

interpolating the flow state (consisting of a set of values for p, u, v, e, P, a) to either side

of each interface at the start of the time step and then applying a Riemann solver to estimate

the flow state at the interface during the time step.

2.2.1 Inviscid Boundary Conditions

Before interpolation, the inviscid boundary conditions are applied by setting up two layers

of ghost cells along each of the boundaries. For a supersonic inflow boundary, all of the

ghost-cell quantities are specified as fixed while, for a supersonic outflow boundary, the

ghost-cell quantities are extrapolated from active cells just inside the boundary. Solid-wall

(i.e. tangency) boundary conditions are applied by setting all of the scalar quantities in

the ghost cells equal to those in the active cells adjacent to the boundary but setting the

ghost-cell velocities to the mirror image of those in the active cells. Note that, for no-slip

walls, we apply just the tangency condition at this stage of the calculation.

2.2.2 Interpolation of the Interface State

The state of the flow either side of each interface is interpolated (or reconstructed) from

the set of cell averaged states by assuming a variation of the variables within cells. This

interpolation is performed independently in each index direction and separately for each



primary variable. For example, the density either side of the vertical interface (i,j) is

obtained by a generalized MUSCL interpolation/reconstruction [8] using the expressions

1

PL = Pi,j + "_ [(1 -- x)(A-)_,j + (1 + tc)(A+)i,j] ,

1

Pn = Pi+,,j- "_ [(1 + tc)(A--)i+,,j + (1 -- g)(A+)i+,,i ] (16)

where

(A-)i,j = MINMOD(Ai,j, _/_i+l,j) ,

(A+),,j = MINMOD(_A,5 ' A,+15 ) , (17)

and

Ai,j =- Pi,j -- Pi-l,j (18)

Interpolation for the other variables and for the horizontal interfaces is done similarly,

Setting the parameter x = 1/3 _gives an upwind-biased third-order interpolation scheme

while setting g = 1/2 gives second-order upwind interpolation. The "compression" parame-

ter [9] is restricted to
3--x

_ _ (19)1</3< 1_t¢

We have used/3 = 2 for the test cases reported in Section 3. The MINMOD limiter function

returns the argument with the minimum magnitude if both arguments have the same sign

and returns zero otherwise (see e.g. [10]). To make the code more robust, we impose the

conditions PL, fir __ flMIN and eL, eR __ eMIN after interpolation, but before the application

of the Riemann solver.

After the interpolation process, a Riemann solver is applied to compute the inviscid flux

vectors (3)i N0te that the solver is applied in a locally rotated frame of reference in which

the u-velocity is normal to the interface and the increasing i or j index being on the right

side of the interface. The transformation is

|

R

_norrnal = "1-?.1,n x + V ny ,

vt_,,ge._ = -u n_ + v n_ , (20)

where n= and n u are the x- and y-direction cosines of the interface normal.

10



2.2.3 Riemann Solver

There are a number of Riemann solvers that can be used including "exact" iterative schemes

[11] and approximate (noniterative) schemes [12] [13] [14]. The approximate schemes are

generally less computationally expensive that the iterative schemes and, because the Rie-

mann solver comsumes a large fraction of the total computational effort, an approximate

scheme is favoured. Although the Roe-type solver is popular because it is relatively fast,

there are situations (such as the double-Mach-reflection case discussed in Section 3.3) where

it occasionally produces spurious results (see [15, 16, 17]). On the other hand, the Osher-type

solver [13] is considered to be fairly robust and free of adjustable parameters [18].

We have opted to use a 3-stage approximate solver in which the first stage computes the

intermediate pressure and velocity assuming isentropic wave interaction. A second stage,

based on the strong-shock relations, may be invoked to improve the first-stage estimate if

the pressure jumps across either wave are sufficiently large. In practice, this modification

has been required only in extreme conditions such as those found in the bluff-body test case

(Section 3.7). The final stage is to select/interpolate the interface state (p, u, v, e, P, etc)

from the set of left, right and intermediate states. If stage 2 (strong shock modification) is

not invoked, the solver is much like Osher's approximate Riemann solver [13].

STAGE 1: The first stage of the Riemann solver assumes that a spatially constant left state

(subscript L) and right state (subscript R) interact through a pair of finite-amplitude (and

isentropic) compression or rarefaction waves. Perfect gas relations ([19] cited in [11]) are

used to obtain the intermediate states (L*, R*) in the gas after the passage of left-moving

and right-moving waves, respectively. The expressions implemented in the code are

1)(-_L _ _R) ] 2"_/(_-1)
P_ = P_= P* = PL [(7--

2a--_ 1 7 Z) ] ' (21)L

and

* * U*
It L _ MR -----

where the Riemann invariants are

w

UL Z "_ UR

I+Z

-- 2aL
UL = UL +-- and

,7_1'

2aR
UR -- UR

"y-l'

and the intermediate variable Z is given by

Z = al=_ ( PL _ (')'-l)/(2"t)

aL \finn/

(22)

(23)

(24)

11



Note that these expressions involve the power operator which is computationally expensive.

For a limited range of base and exponent, the standard power function is replaced by the

approximate expansion given in Appendix B. In the exceptional situation of (UL -- DR) < 0,

we assume that a (near) vacuum has formed at the cell interface and set all of the interface

quantities to minimum values.

STAGE 2: If the pressure jump across either wave is large (say, a factor of 10), then the

guess for the intermediate pressure is modified using the strong shock relations.

If P* > 10 PL and P* > 10 PR then both waves are taken to be strong shock waves and

the intermediate pressure and velocity can be determined directly as

2 PL ___ , ___(Ui -- UR) , (25)
. v'PR -t- x/pL

and

= -L + uR (26)

If P* is greater than PL or Pn (but not both), the staged estimate for P* can be improved

with two Newton-Raphson steps of the form

where

P;+l : P: -- Fn \dP*] ' (27)

F,, = - , (28)

and

_ {P"_ _ P* < 10 PL. UL -- ._-1 _,N-L] 1/2 P" > 10 PL
tLL =

,

-- 2__a_[ P* '_:_; p.

, Un + _-1 _,-P-_n] ' <_ 10 Pn

llR = ( 2P* _1/2 P*
un + _,_] , > 10 Pn

(29)

(30)

During the update, we ensure that P* >_ PMIN where PMIN is some small value. After

updating P*, the intermediate velocity is evaluated using the relevant strong-shock relation

from (29) or (30).

STAGE 3: Now that we have computed the pressure and velocity in the intermediate

regions behind the waves, the other intermediate flow properties may be evaluated. Then,

the interface conditions used in the inviscid flux vector (3) may be selected or interpolated

12



from the 4 flow states using the logic shown in Fig. 4. Note that, although only the left-

moving waveis discussedbelow, a similar procedureis usedto obtain the flow state behind

the right-moving wave.

If the pressurerisesacrossthe left-moving wave(i.e. P* > PL), the left wave is assumed

to be a shock and density is obtained from the Rankine-Hugoniot relation as

* [_ +I)P*+(_/-1)PL] (31)PL = PL + 1)PL + ('7 -- 1----)--_J

The specific internal energy is obtained from the equation of state as

p*

e_ = (.),_ 1)p_ ' (32)

and estimates for the local speed of sound (for later use in the interpolation of the interface

properties) are

a_ = ¢_/(')'- 1)e_. (33)

The velocity of the wave (relative to the initial left state) is given by

UL -- WSL -= 2 PL -k- 7+17- 1 , (34)

where WSL is the velocity of the wave relative to the cell boundaries.

If the pressure falls across the left-moving wave (i.e. P* <_ PL), the isentropic-wave

relations are used to obtain the intermediate properties. The local speed of sound is obtained

from the Riemann invariant as

a_ = (UL - u_)(3, - 1)/2 , (35)

while the specific internal energy is obtained from the sound-speed relation as

(a;)2 (36)*

eL -- (7- 1)7

The density is obtained from the equation of state as

P" (at)
-

The velocity of the leading-edge of the wave (relative to the initial left state) is given by

uL - wsL = (as)

13



In the precedingperfect-gasequations an effective7 may used to include variable gas

properties in an approximate manner. We evaluate this effective I' as a density weighted

function [20] using

= _'_L+ (1- _)'_R, (39)

where

and

v_ (40)
"= v_+v_'

2.3

")'L

_/'R --

Viscous Flux Calculation

PL
+1,

pLeL

PR
+1.

pReR
(41)

After computing the inviscid flux vectors (3), we save the values of u, v and T at the

midpoints of the primary-cell interfaces for use in the calculation Of the molecular transport

of momentum and energy across the interfaces. These values may be either those computed

by the Riemann solver or averages of the interpolated left- and right-states.

The spatial derivatives required in the viscous stress terms (7) are obtained by applying

the divergence theorem to each of the secondary cells. This gives an average value of the

derivative which is then assigned to the primary-cell vertex at the "centre" of the secondary

cell. Thus, for the =spatial derivatives of temperature at vertex i,j, we compute

t _3

1
= - _ (T_,+ T_,)(_.,- y_,) /

2 A_BIC,D,

-1
= E (T_I+ TB,)(xB,- x_,)

2 A,BtC_D_

AA'B'C_D_

/ AA'B'C'D' , (42)

where
1

-- E (XAi + XB,)(yB,-- YA') , (43)
AAIBICID_ 2 AIBICIDI

and A r, B r, C I and D r are the primary-cell centres surrounding the vertex. Spatial derivatives

of the u- and v-velocity components are calculated similarly. The viscous fluxes (4) at the

interface midpoints are then computed using averages of the viscous stresses at the nearby

Cell vertices.

14



2.3.1 Viscous Boundary Conditions

For the velocity field, application of the "no-slip" boundary condition is simply a matter of

setting both of the components to zero at the boundary interfaces. The temperature can be

set to a specified value for a fixed-T wall or it can be set equal to the value at the adj acent

cell centre for an adiabatic wall. For supersonic inflow, supersonic outflow, or a tangency

boundary, we leave the values as computed by the inviscid flux routine.

Note that, along the boundaries, the secondary cells are constructed using the two ad-

jacent primary-cell centres and two interface points. The arrangement for each boundary is

shown in Fig. 5.

2.4 Time Stepping

The conserved quantities are advanced from time level n to time level n+ 1 with the predictor-

corrector scheme

dU(,O
AU 0) = At

dt '

U 0) = U (_)+AU (1) ,

dU O)
AU (2) = At-

dt '
1

U (n+') = U 0)+_(AU <2)-AU 0)) , (44)

where the superscripts (1) and (2) indicate intermediate results and the temporal derivative
dU

(-_-) is obtained from equation (11). If a first-order scheme is desired, only the first stage is

used and U (n+a) = U 0). Although first-order time-stepping requires fewer operations than

second-order time-stepping, it is also less robust.

To maintain stability, the time step is restricted to

At < Atauo_e = CFL 1 + -_E + Atwsco_s ' (45)

where Atalto_a is the smallest value for all cells and

4
CFL < (46)

- 5-x+/3(1+_)

is the specified Courant-Friedrichs-Lewy number. Note that restriction (46) is applicable

to the schemes developed by Chakravarthy [9] whereas the present procedure seems to be

stable for slightly higher values of CFL in some situations. For each cell, the inviscid signal

frequencies along the North and East interfaces are approximated as

1 [VU#angen, {+ a and 1 IvE,t_,_g_,,] + a (47)
AIN LN ' "AtE LE

15



while the viscouslimit [21] is approximatedas

Atviseous Pr p

2.5 Computational Effort

Currently, the code has not been optimized (although the flux calculation routines do vec-

torize with thedefault:0Ptimizationoffered by the Cray Standard-C Compiler). On a single

processor of a Cray Y-MP, the calculation takes approximately 30 - 35 #s/cell/predictor-

corrector step for an invlscid calculation and approximately 40 #s/cell/predictor-corrector

step for a viscous calculation. On a SUN Spare-2 workstation, the calculation takes approx-

imately 1 ms/cell/predictor-corrector step for a viscous calculation. If only the forward time

step is used, these times are halved.
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3 Test Cases

3.1 One-dimensional Shock Tube

The first test case is the so-called one-dimensional shock tube problem used by Sod [22].

The domain consists of a mesh of 100 x 2 cells over the rectangular domain 0 < x < 1.0m,

0 < y < 0.1m. Reflecting (i.e. tangency) conditions are applied along all domain boundaries

and viscous effects are omitted. The gas is calorically perfect with -y = 1.4. For x <_ 0.5m,

the initial state is

p=l.0kg/rn 3, P = lO s Pa, u = v = O, e=2.5xl0 s J/kg/K,

while, for x > 0.5m, it is

p = 0.125 kg/m 3, P = 104 Pa, U_v_O, e = 2.0 × l0 s J/kg/K.

At t = 0, the hypothetical diaphragm (separating the two initial states) is removed and

the inviscid equations are integrated in time to t _ 0.603 x 10-3s with CFL "_ 0.5. MUSCL

interpolation with x = 1/3 is used. The resulting flow state for a single row of cells in

the x-direction is shown in Fig. 6. Comparison with the exact solution (see e.g. [4]) is

reasonably good. The shock is captured in three cells and has the correct speed. However,

the contact discontinuity is fairly diffuse and the extreme edge of the expansion fan shows

some smearing. There is also a small glitch at the base of the rarefaction (x _ 0.5m) as

seen in [9] (Secion 2.6) and [18]. Setting CFL = 0.01 produced no discernible change in the

plotted solution. The contact discontinuity and shock were spread over the same number of

cells and the small glitch was still evident at the base of the rarefaction.

Of the test cases discussed here, this test case is simplest and requires the least memory

and processing time. On a Spare-2 workstation, the total processing time is approximately

2T seconds for 99 time steps (1.4 ms/cell/predictor-corrector time step). Note that this is

an overall time and includes file I/0 and initialization of the geometry data.

3.2 High-Temperature Shock Tube

This case is similar to Sod's shock tube problem but is more demanding as it has pressure

and temperature jumps that are large enough for thermodynamic and chemical effects to be

significant.
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The flow domain covers0 < x < 1.0m, 0 < y < 0.1m and is divided into a mesh of

200 x 2 rectangular cells. The initial flow state is the same as that used by Grossman and

Waiters [23]. For x < 0.5m, we set

p= 2.641kg/m 3, P=10.09x106Pa, u=v=0, e=21.82×106 J/kg/K,

while, for x > 0.5m, we set

p = 1.174 kg/m 3, P = 0.1006 × 106 Pa, u = v = 0, e = 0.2148 × 106 J/kg/K.

The gas is now assumed to be air in chemical equilibrium with the pressure, temperature

and local sound speed specified as curve fits on density and internal energy [7].

Again, the hypothetical diaphragm is removed at t -- 0 and the governing equations

are integrated forward in time with CFL = 0.5 and t¢ = 1/3. Figure 7 shows the flow

state at t = 0.125 × 10-3s. Although an exact solution was not included in this figure, the

finite-volume solution appears to he in reasonable agreement With the results published in

[23]. This agreement indicates that the use of an effective 3' to approximate variable gas

properties in the Riemann solver is a reasonable approach for this type of problem.

On a Spare-2 workstation, this case requires approximately 250 seconds of cpu time for

194 time steps (3.2 ms/cell/predictor-corrector time step).

3.3 Double Mach Reflection

To test the code's ability to capture multidimensional dicontinuities, we examine the double

Mach reflection case 10 from Glaz, et al [24].

Figure 8 shows the flow domain which is divided into 200 x 100 cells. These cells are

equally spaced in the x-direction and their vertical interfaces are aligned with the y-axis.

For each x-station, the cells are equally spaced in the y-direction.

The gas is a calorically perfect gas with 3' = 1.4 and has initial conditions of

p = 6.82 x 10 -2 kg/m 3, P = 6.0 x 103 Pa, u = v = O,

e = 2.183 × l0 s J/kg/K,

throughout the domain. At t = 0, a constant supersonic inflow with

p=0.3028kg/m 3, P=95.88×103Pa, u = lOO6m/s, v = O,

e=7.913×105 J/kg/K, M=1.51,
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is applied to the West (x = 0) boundary. Tangencyconditions are applied along the North
(y = 1.0m)and Southboundariesand zero-orderextrapolation isusedat the East (x = 1.0m)
boundary. The governing equationsfor inviscid flow are integrated forward in time with

CFL = 0.5 and n = 1/3.

Initially a planar shock is established and propagated into the flow domain with a shock

Mach number of 3.72. On encountering the ramp, this "primary" shock is reflected and a

(nearly) self-similar flow is established. Figure 9 shows the density contours at two times after

the shock has encountered the ramp. The main features of the flow are the (1) primary shock

(still travelling from left to right), (2) a detached (curved) shock forming over the leading

edge of the ramp, (3) a Mach stem from the primary shock to the ramp, (4) another Mach

stem from the primary shock to the detached shock, and (5) a pair shear layers propagating

from the the intersections of the shocks. At later times, the detached shock continues to

propagate upstream and the flow field becomes subsonic. Figure 10 shows a comparison of

the present solution at t = 0.7ms and an interferogram from [24]. Agreement is reasonable

given the uncertainty in the physical gas properties and the grid resolution used in the

calculation. Note that there is no evidence of a distorted Mach stem near the wall as seen

in some calculations made with the Roe-type approximate Riemann solver [15, 16, 17].

3.4 Flat Plate Boundary Layer

The implementation of the two-dimensional viscous terms was validated by computing 2

cases of a supersonic, laminar boundary layer over a flat plate.

The flow geometry (for both cases) consists of a flat plate, 1.0m long, aligned with a

uniform Mach 2 flow. The gas is considered calorically perfect with "y = 1.4, R -- 287J/kg/K

and a constant Prandtl number of 0.72. The computational domain, as shown in Fig. 11,

is shaped to include the leading-edge interaction shock (LEIS). The domain is divided into

N × N cells which are clustered toward the plate surface and toward the inflow boundary

using one of Robert's stretching transformations [25] (see also Section 5-6.1 in [26]).

For case 1, we set N -- 100 and apply supersonic free-stream conditions of

p=0.0404 kg/m 3, u = 597.3 m/s, v = O, e=1.592×10 s J/kg,

to the West and North boundaries. These conditions correspond to

M = 2.0, ReL = 1.65 x 106, T = 222 K,

as used in [27]. The South boundary is set to be a no-slip wall with a fixed temperature

T_l_ = 222K while the East boundary conditions are obtained by zero-order (or constant)
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extrapolation. Initially, the flow throughout the domain is set at free-streamconditions and

the governingequationsareintegrated forward in time usingfirst-order (Euler) tlme-stepping

with CFL = 0.8 and _ = 1/3. Figure 12 shows the pressure field at t = 7.0ms. The only

apparent feature is the weak shock propagating into the flow from the leading edge of the

plate. However, a boundary layer develops along the plate and attains a total thickness of

approximately 0.005m by the end of the plate. Figure 13 compares the temperature and

x-velocity profiles at x = 0.941m with profiles computed by a spectrally-accurate boundary

layer code [28]. The shear stress estimates agree to within 3% at this time and the flow is

still approaching steady state (slowly). For this x-station, the first cell-centre off the wall

has y+ __ 5 where

Y+ = yp_, r_--_/p,_ (49)
#w

Case 2 has the same flow geometry but has

N = 50, p = 0.00404 kg/m 3, ReL = 1.65 × 105.

All other parameters are the same as case 1. Figure 14 shows the cell-centre mesh and

the pressure field at t = 8.0ms. The LEIS is now much stronger and the boundary layer,

which scales with v/R-_, is approximately 3 times thicker. Fig. 15 shows the boundary

layer profiles at x = 0.916m where the displacement thickness is 5.10ram. Again, there is

reasonable agreement with the spectrally accurate boundary layer solution. This indicates

that the weak leading-edge shock influences the boundary layer very little. The processing

time required for this case is approximately 1.6 hours on a single processor of a Cray Y-MP

for approximately 116000 time steps (20 #s/cell/Euler time step).

3.5 Inviscid Flow over a Cone

Inviscid flow over a cone is used to test the axisymmetric formulation of Appendix A. In the

steady-state limit, the shock (and other constant property lines) are straight and there is an

"exact" solution [29] (see also Ch. 10, [30]). Figure 16 shows the flow geometry for a 20 °

half-angle cone whose axis of symmetry is along the x-axis. The flow domain is dlvidcd into

a mesh of 100 × 100 cells. The cells are equally spaced in the x-direction and their vertical

interfaces are aligned with the y-axis. For each x-station, the cells are equally spaced in the

y-direction.

Although we are interested in the quality of the steady-state solution for this test, we

simulate the flow using the same initial and inflow conditions as the double Mach reflection
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case (Section 3.3). The gas is a calorically perfect with 7 = 1.4 and initial conditions

throughout the domain are

p=6.82 ×10 -2 kg/m 3, P=6.0 × 103Pa, u=v=0,

e = 2.183 × l0 s J/kg/K

At t = 0, a constant supersonic inflow with

p=0.3028 kg/m 3, P=95.88×103 Pa, u = lOO6m/s, v=0,

e - 7.913 × 10 s J/kg/K, M - 1.51,

is applied to the West boundary. Tangency conditions are applied along the North and

South boundaries and zero-order extrapolation is used at the East boundary. The governing

equations for inviscid flow are integrated forward in time with CFL = 0.5 and high-order

MUSCL interpolation.

Figure 17 shows the density field at two instants after t = 0. By t = 1.Ores, the primary

(normal) shock has left the flow domain and conical flow is being established over the nose of

the cone. Figure 18 shows both the pressure and density fields (at t = 5.0ms) when the flow

has nearly reached steady state. Except for small deviations, the contours are straight lines

aligned with the (conical) generators propagating from the cone vertex. The shock angle

closely matches the value of 49 ° taken from Chart 5 in [31]. Note that, for an equivalent

two-dimensional situation, there is no "attached-shock" solution.

On a Spare-2 workstation, this case requires 5.36 hours cpu time to take 2410 time steps

(0.8 ms/cell/predictor-corrector time step).

3.6 Viscous Flow along a Cylinder

The implementation of the axisymmetric viscous terms is examined by computing the su-

personic, laminar boundary layer along a hollow cylinder. Except for the axisymmetric

geometry, this case is similar to case 2 of the flat-plate boundary layer in Section 3.4.

The flow geometry consists of a hollow cylinder aligned with the x-axis. The cylinder

is 1.0m long and has a 0.005m radius. The free stream is a uniform supersonic flow with

M = 2. The gas is considered calorically perfect with "y = 1.4, R = 287J/kg/K and

a constant Prandtl number of 0.72. The computational domain, as shown in Fig. 19, is

shaped to include the leading-edge interaction shock (LEIS) and is divided into 50 × 50 cells

(as done for the flat-plate boundary layer).
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We apply supersonicfree-streamconditions of

p=0.00404 kg/m 3, u=597.3m/s, v=O, e= 1.592 x 10 s J/kg,

M = 2.0, ReL = 1.65 x l0 s, T = 222 K,

to the West and North boundaries. The South boundary is set to be a no-slip wall with

a fixed temperature T_tl = 222K while the East boundary conditions are obtained by

zero-order (or constant) extrapolation. Initially, the flow throughout the domain is set at

free-stream conditions and the governing equations are integrated forward in time using first-

order (Euler) time-stepping with CFL = 0.8 and high-order MUSCL interpolation. Figure

20 shows the pressure field at t = 8.0ms. Compared to the two-dimensional situation, the

LEIS is much weaker and the boundary layer at the end of the cylinder is thinner. Figure

21 compares the temperature and x-velocity profiles at x = 0.916m for both a 50 x 50 grid

and a 70 x 70 grid with profiles computed by a spectrally-accurate boundary layer code

[28]. Here, the displacement thickness is 4.22mm which is approximately 20% tess than the

corresponding value on the flat plate. Although agreement is generally good for both grids,

there is noticeable improvement in the temperature profile for the finer grid.

3.7 High Mach Number Flow around a Sphere.

The robustness of the code is demonstrated by computing a Mach 12 flow over a sphere.

This case is difficult because the shock in front of the sphere is very strong and because there

is a geometric singularity along the stagnation line.

Figure 22 shows the flow geometry and the 60 x 60 mesh of cell centres. The South

boundary is the y = 0 symmetry line (and stagnation line) while the East boundary is the

surface of the sphere. A tangency condition is applied at this surface. For case 1, free-stream

conditions of

p=0.5097 kg/rn 3, P=42717 Pa, e=2.095 x 10 s J/kg,

u= 4120.6(1 -exp(-5 x lO-6t)) re�s, v=O, Mnomi,_l = 12,

are applied to the West boundary. Flow conditions at the North boundary are obtained by

zero-order (constant) extrapolation. The shape of the West boundary is derived from the

shock-position correlations in [32]. Initial conditions throughout the domain are set to

p=0.5097kg/rn 3, P=42717 Pa, e=2.095x105 J/kg, u=O, v=O,
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The inviscid equations are then integrated forward in time using first-order interpolation,

Euler time-stepping and CFL = 0.5. Figure 23 shows the flow field (density contours)

at an early time and again after the flow has approached steady state. The shock wave

moves off the body and approaches its steady-state position in a well behaved manner. For

this case, a finite-difference scheme using Roe-type flux-difference splitting required a rather

large value for its entropy-fix parameter in order to obtain a physically reasonable solution

(J. White, NASA Langley Research Centre, private communication). Although the shock

shape is well behaved for the present code, there are significant small-scale disturbances just

behind the shock, in the subsonic region. These disturbances appear to caused by small

perturbations to the shock position and have the scale of the local mesh spacing. Discrete

points from experimentally derived correlations [32] are plotted on the later-time solution.

On the whole, agreement is good. The largest deviations are near the outflow boundary

where the flow field may be still developing.

Two other calculations are included to show the effect of viscosity on the small-scale

disturbances in the subsonic region. To make the viscous effects larger, the free-stream

density and pressure are lowered to

p=0.5097× 10 -2 kg/m 3, P=427.1Pa.

The governing equations are integrated in time with the viscous terms included but the East

boundary condition is still a tangency condition. For case 2, the first-order interpolation

is used and the result is shown in Fig. 24(a). The extra dissipation has damped the dis-

turbances in the subsonic region. High-order MUSCL interpolation is used for case 3 and

as shown in Fig. 24(b), the result is essentially the same except for some slightly noisier

contours away from the axis. Profiles of density and pressure along the line of cells adjacent

to the x-axis are shown in Fig. 25. The shock appears to be captured in 2 or 3 cells with

no oscillation and the density jump is close to the ideal strong-shock value of 6 (see e.g. [33]

Section 2.2). The pressure ratio from free-stream to the stagnation point is 185.8 which is

very close to the ideal value of 185.9 for M = 12 (see e.g. [30] Table A.2).
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4 Concluding Remarks

This report has described a program for the time-integration of the Navier-Stokes equations

on a two-dimensional structured mesh. The program is based on a cell-centred, finite-volume

formulation and uses a three-stage Riemann solver to compute the inviscid fluxes. Viscous

fluxes are computed by applying the divergence theorem to the flow data on a set of secondary

cells. Grid metrics are not required. Time stepping is performed with either an Euler or a

predictor-corrector scheme.

Currently, the program is restricted to a single-block, structured grid. However, the code

modules are written so that they may be applied to any number of such blocks. All that

is required is the addition of a set of routines to exchange boundary data and a modified

time-stepping procedure. This extension and the addition of chemical source terms will be

the subject of future work.
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A Axisymmetric Flow Geometry

_,Ve now consider an axisymmetric flow with velocity

ff = u _ + v _ + w _z

u = ,_o(=,,'),

v = _o(_,'9 cosO,

w = vo(x,r) sin (50)

26. TheHere r -- y0 and 0 are the polar coordinates in the (y, z)-plane as shown in Fig.

subscript 0 refers to the 0 = 0 (or the z = 0) plane. All other primary variables (i.e. P, T,

e, fis) are functions of x and r only. Derivatives are related by

0 0

Oz Oz '

0 sin 0 0 0 O
0y - r O0 +c°s Or '

O cos0 0 0 O
Oz - +----r 0t_ +sin Or (51)

Following the approach of Vinokur [6], we introduce an axisymmetric cell of extent 2¢

radians in the (y, z)-plane. Figure 27 which shows an segment of an axi-symmetric volume

element with the axis of symmetry aligned with the x-axis. Note the "Front" and "Back"

interfaces at angles 0 = +¢ and 0 = -¢ respectively. These interfaces have unit normals

given by

fi0=+¢ = .---sin¢_y+cos¢_z ,

fi0=-¢ = -sin¢_u-cos¢_z (52)

Due to the axial-symmetry of the flow field, there is zero normal velocity at these planes.

The cell volume is now

]s yz dy , (53)
_t 2¢

0

where So is the contour of the cell in the (x,y)-plane. Also, we define the modified cell

volume (or volume per radian) to be

2¢ (54)

In the code, equation (54) is approximated by

_,= _ (yA+ y_)(_ + z_)(y. _ y_) (55)
ABCD 2 2
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A.1 Governing Equations in Cartesian Coordinates

We now consider the cartesian form of the Navier-Stokes equations in three dimensions and

then substitute the axisymmetric expressions into each of the terms. The z-momentum

equation will then be dropped from the set and replaced with the approximation that the

pressure at the Front and Back interfaces is the same as that at the cell centre. The goal is

to reduce the full three-dimensional system to a system of quasi-two-dimensional equations

which can be used in place of equations (1)- (4), (7) in Section 2.

The governing equations can be expressed as

0
]o

where

Udxdydz + J[s [(F-F,_)_+(G-G,,)_+(H-H,_)_,].hdS = J[n Qdxdy

(56)

P

pu

U = pv
pw

pE

Pfis

(57)

F

pu

pu _ + P

pvu

pwu

pEu + Pu

pfisu

, G=

pu

puv

pv 2 + P

pwv

,oEv + Pv

pfisv

H

pw

puw

pvw

pw 2 + P

pEw + Pw

pfisw

, (58)

F_

0

v_u + TyxV + rz:_w + q_

HU

0

T_u

_y
GV =

rzy

T_uU + VyyV + V_yW + qu

0

Txz

"rzz

T_U + Tu_V + "r_,w + qz

, (59)

(60)

The individual viscous stress terms are

ou {o_ o_ o_)._= : 2_,_ + A\ oz + _ + _ ,
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av (a_ a_ 0w)_-_ = 2_,_+_ U+_+_

ow (ou o,, ow)T_, = 2_3-i-z+a Uz+N+_O_2z

(O;zvxz = %z = /_ + ,

(O;zzoz)%, = r. v = p + ,

and the heat-flux terms are

k OT
q_ = --_x'

= _k aT
qv Oy '

qz = -k OT
Oz

Currently, we set the diffusion velocities V_, to zero.

(61)

(62)

A.2 Application to the Axisymmetric Cell

We now substitute the axisymmetric expressions into the cartesian equations (56) - (62).
The algebraic vectors U, F, G and H are now

f

polio

mu_ + Po
povo cos 0 Uo

povo sin 0 Uo

poEouo + Pouo

Po f i,o Uo

H

U

Do

pouo

povo cos 0

povo sin 0

poEo
mfi°,o

, G=

povo

pouovo cos 0

pov_ cos 2 0 + Po

povo sin 0 Vo cos 0

poEovo cos 0 + Povo cos 0

pofis,oVo cos 0

poVo sin 0

PoUoVo sin 0

povo cos 0 Vo sin 0

poV2osin 2 t_ + Po

poEovo sin 0 + Povo sin 0

Pofi,,oVo sin 0

(63)

(64)

(65)
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Taking 0 << i and dropping some of the high-order terms in the viscous-stress expressions

gives

and

Txy

Txz

T_z

_= = "z_-yf+ _ \ ox +-ST+ ,

Ovo [Ouo Ovo _ )_ = 2_-_T + _ \-yf + -_T + ,

Ovo_-_, = 2_+_\-_-x +-_+ ,

(O.o Ovo)
= _ = "c°s°\-b-;+ o_1 '

(O o Ovo)
= r,= = #sin0\0r +-_x] '

(Ovo vo)= r,u = 2#sin0cos0\0r r '
(66)

kOTo
q==--O---X'

qy = -kcos000Tr ° ,

OTo
qz = -ksin0 0----_-

(67)

Assuming small ¢, we can integrate in 0 and drop the z-momentum equation to obtain

O<Uo>
f_ +

Ot

- 2¢_

+ /SFrom

-t- fsBack

=- 0 ,

r (F- F_)o=o dr

r (G- Gv)0=0dz

[-sine (G-G_)o=+¢ +cos¢ (g-Hv)o=+¢]'fio=+¢ dS

[-sin _b (G-C_)o=-¢- cos¢ (g-H_)o=-¢]" ¢_o=-¢ dS

(68)

where the line integrals over So are analogous to the contributions from the North, South,

East and West interfaces in the two-dimensional case while the integrals over Srro,_t and SB_k

are the contributions from the 0 = +¢ (Front) and 0 = -¢ (Back) interfaces respectively.

A.3 Treatment of the interfaces at 0 = +¢

Now, we move the Front and Back interface contributions to the right-hand-side and approx-

imate the integrals by an average times the interface area, A. The result may be considered
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an effective source term

Q' _2 = -A [- sin ¢(G - G,)0=+¢ + cos ¢(H - H,)0=+¢]

-A [- sin ¢(C - C_)0=-¢- cos¢(H - H_)0=-¢] , (69)

where

A = fs x dy (70)
0

Substituting the expressions for G, G_, H and H_, and taking the limit of small ¢, we obtain

Q' a = 2_bA

0

0

Po - too
0

0

(71)

where we define

zoo = 2# rvo + t \-0-x-x + +

Note that the quantities in Q' are evaluated at the cell centre.

(72)

A.4 Summary of the Axisymmetric Equations

Reverting to (x, y) notation without the zero subscripts, and dividing through by equation

(54) gives the governing equations for axisymmetric flow as

d<U>

tit 1 /s(y F_yF_) dy- 1 L(ya_yG,_) dx+-_ -@ =Q' (73)

where the U, F and G vectors are

U

P

pu

pv

pE

Pf_

, yF =

pu

pu 2 + P

y pvu

pEu + Pu

pfisu

, yG=y

pv

puv

pv 2 + P

pEv + Pv

pfi_v

(74)

Note that, except for the "y" premultiplying factor, they are the same as those in the planar

two-dimensionM situation defined in (3). The viscous terms are

y_=

0

yv_:zu + yT_V + yqx

y p V_ ,i_Yii_

yGv --

0

yry_

y_'yu

yTy_:U + yryyV + yqy

ypV_,._

(75)
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where

Txy

ou (ouov_-_ = 2_,E+_, E+_+

r_ = 2.N+_ _+N+

-.- %_ = # + , (76)

and

= _k OT
q_ _ ,

k OT
qv = _

(77)

Treating the viscous contributions in the form yr avoids any difficulties with the geometry

The effective source term (containing the Front- and Back- interfacesingularity at y = 0.

contributions) is

!

0

0

(P-roo)A/91' (78)

where

Too = 2#y+ ,_ _--_x+_--_y+ (79)

These equations are equivalent to those used by Eklund [34].

Finally, we note that the treatment described here (including discretization) preserves

free-stream properties. This was checked by running the cylinder test case in Section 3.6 with

tangency conditions along the cylinder. A 30 x 30 grid was used and the viscous equations

were integrated to t = 2.0 x 10-as. No variation was seen in the flow field.
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Y Xmin Xmax

0.2 0.12 8.4

4.0 0.75 1.55

-3.0 0.55 1.48

Table 1: Argument ranges for 1% error.

where

B Approximate Power Routine

When computing z = x v, we can break the calculati0n into stages and compute z =

exp[y ln(x)]. For x reasonably close to 1, we may approximate the logarithm with

ln(x) __ 2 r + ½r3+ g_ + 7_ , (80)

X--]

= (81)
x+l

The exponential is then approximated by the usual expansion

t 2 t 3 t 4 t s

e'__ l+t+_+_+_+sU (82)

This procedure produces results with less than 1% error for the arguments shown in Table 1.

The floating-point operation count is 30. Note that the exponent in equation (24) is fairly

small over the range of effective specific heats expected for most gasdynamic situations

and the approximation is used if the base (x = PL/PR) is within the first range shown in

Table 1. However, the exponent in equation (21) is usually large (5 < y < 12) and so, the

approximation is applied to equation (21) as z = x s x _-s.
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C Header File

/* cns4u.h
* Header file for the flow solver code cns4u.c.

* NOTE...
W

* We need to include the files "compilers.h" and "physics.h"

* before this file.

*/

#define DEBUG 1

/*

* Debugging level...

* 0 = no debugging

* 1 = print message on entry to infrequently used functions

* 2 = print message on entry to frequently used functions

* 3 = dump data every step
*

*/

********************************

/* Data Structure Definitions */

********************************

*

* types of boundary conditions for blocks

* ADJACENT

* SUP IN

* SUP OUT

* SLIP

* ADIABATIC

* FIXED T

* SPECIAL

*/

adjacent to another tile

supersonic inflow

supersonic outflow

slip/tangency (adiabatic)

no-slip, adiabatic

no-slip, fixed T wall

special purpose code has been included in

the routines apply_inviscid_bc() and

apply_viscous_bc().

#define ADJACENT 0

#define SUP IN 1
m

#define SUP OUT 2

#define SLIP 3

#define ADIABATIC 4

#define FIXED T 5

#define SPECIAL -I
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* types of blocks

* shock-layer, boundary-layer, outer-region

*/

#define INACTIVE 0

#define BL 1

#define SL 2

#define OR 3

* NL : number of levels in the time-stepping procedure

* DATA DIM : spatial dimensions of data

*/
#define NL 2

#define DATA DIM 2

typedef struct cell center

{
/* GEOMETRY */

double X, Y; /* Centre coordinates, m */

double volume; /* Cell volume (unit depth), m**3 */

double area; /* (x,y)-plane area, m**2 */

/* PRIMARY VARIABLES */

double rho; /* density, kg/m**3 */

double u; /* normal velocity, m/s */

double v, w; /* tangential velocities */
/* nominal directions for u,v,w */

/* are x,y,z respectively */

double e;

double p;

double a;

double T;

double mu;

double f[NSPECD];

/* specific internal energy, J/kg */

/* pressure, Pa */

/* speed of sound, m/s */

/* temperature, K */

/* viscosity, Pa.s */

/* species mass fractions */

/* CONSERVED VARIABLES */

/* mass and specied appear above */

double ru; /* X-momentum/unit volume

double rv; /* Y-momentum/unit volume

double rE; /* Total Energy/unit volume

*/
*/
*/

double DrDt[NL]; /* updates for density/mass

double DruDt[NL]; /* X-momentum

double DrvDt[NL]; /* Y-momentum

double DrEDt[NL]; /* Total Energy

double DfDt[NL] [NSPECD]; /* Species mass fractions

*/
*/
*/
*/
*/

/* PRODUCTION VECTOR */

double Q r; /* Mass production from sources */

double Q ru; /* X-Momentum from body forces */

double Q rv; /* Y-Momentum from body forces */

double Q._rE; /* Total Energy production */

double Q rf[NSPECD]; /* Species production; reactions */

);
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typedef struct cell_interface

{
/* GEOMETRY */

double length; /* Interface length in the x,y-plane */

double cosX, cosY; /* Direction cosines for unit normal */

/* PRIMARY VARIABLES */

double u; /* normal velocity, m/s

double v; /* tangential velocities

double T; /* temperature, K

double k; /* heat flux coefficient

double mu, lambda; /* coefficients of viscosity

*/
*/
*/

*/
*/

/* FLUXES OF CONSERVED QUANTITIES */

double F_r, G__r;

double F_ru, G_ru;

double F_rv, G_rv;

double F_rE, G__rE;
double F rf[NSPECD];

double G rf[NSPECD];

};

/* Mass / unit time / unit area */

/* X-momentum */

/* Y-momentum */

/* Total Energy */

/* Species mass fractions (X-comp)*/

/* Species mass fractions */

typedef struct cell_vertex

{
/* GEOMETRY */

double X, Y; /* Coordinates, m

double area; /* x,y-plane area of secondary cells

/* DERIVATIVES OF PRIMARY VARIABLES */

double dudx, dudy, dvdx, dvdy; /* velocity derivatives

double dTdx, dTdy; /* Temperature deriv.

};

*/
*/

*/
*/

/* THE SINGLE-BLOCK Data Structure */

*************************************

typedef struct block_data

{
/*
* This data structure should contain everything needed for

* a single-block solution -- both geometry and flow data

* There are a few references to MULTI-BLOCK data but they

* should not affect things unless the macro "MULTI_BLOCK"
* is defined.

*/

# ifdef MULTI BLOCK

struct node of graph *mynode; /* node that owns this data

# endif

*/
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double dt;

double dt0;

double dt allow;

double cfl_target;
double sim time;

double cfl__min, cfl_max;

double cfl tiny, time_tiny;

int max steps;

/* magnitude of time step, s */

/* initial time step */

/* Allowable time step */

/* desired CFL number */

/* simulation time in seconds */

/* estimates of CFL number */

/* the smallest so far... */

/* max number of time steps */

/* on this grid */

int Xorder;

int Torder;

/* spatial order 1 or 2 */

/* temporal order 1 or 2 */

double tplot, dtpiot; /* timer for writing solution */

double this, dthis; /* another sample timer */

int hncell; /* number of sample cells */

int hxcell[NDIM], hycell[NDIM]; /* location of sample cell */

struct flow state free_str;

struct flow state init_str:

/* free-stream properties */

/* initial flow properties */

/* These are used to set up */

/* uniform flow conditions. */

int nxdim, nydim:

/.
* Total number of cells in exch direction for this block.

* these will be used in the array allocation routines.

*/

int nnx, nny;

/* Number of active cells in the X,Y-directions */

int nghost;
/* Number of ghost cells around the boundaries. */

int ixmin, ixmax;

int iymin, iymax;

/*
* These index limits are set to allow convenient access

* to the arrays without having to worry how many buffer

* cells are present.
* ixmin <= i_ <- ixmax, iymin <= iy <- iymax

* Typically ixmin m iymin = 2.

*/

int nsp;
/* Number of species (I <= nsp <= NSPECD) */

int bc_.N, bc_S, bc__E, bc__W;

/*
* Boundary condition flags for the North, South, East and west
* block-domain boundaries. Options are ADJACENT, SUP_IN, SUP_OUT,

* SLIP, ADIABATIC, and FIXED_T

*/

double Twall N, Twall S, Twall_E, Twall W;

* Wall temperatures for use with the FIXED T boundary condition.

* (NOTE: Only relevant for viscous flows)

*/

7

=

!
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int region_type;

/*

* type of region this is (INACTIVE, SL, BL, or OR)

*/

int viscous;

/*
* viscous=0:

* I:

*/

inviscid terms only

include viscous terms

int axisymm;

/*

* axisymm=0:

* I:

2D planar equations

2D axisymmetric equations

double delta[DATA__DIM+I];

/*

* discretization parameters (delta x, delta y, and delta t)

*/

struct cell center **Ctr;

struct cell interface **VF;

struct cell interface **HF;

struct cell vertex **Vtx;

/*
* Most of the data is stored in the preceding arrays.

* Ctr[ix] [iy] = cell center values

* VF[ix] [iy] = vertical face properties

* HF[ix] [iy] = horizontal face properties

* Vtx[ix] [iy] = cell vertex values

* VF and HF are used to interface to the Riemann solver

* and to store the interface fluxes.

* Vtx is used for the viscous terms.

*/

}; /* end of THE data structure definition */
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z

* Indexing of the data.
w

* The following figure shows cell [ix, iy] and its associated
* vertices and faces.

North (horizontal)

Vertex C face Vertex B

[ix-l,iy] [ix, iy] [ix, iy]
X .............. +

West cell center

face [ix, iy]

[ix-l,iy] x o X

+ .............. X' +

Vertex D South Vertex A

[ix-l,iy-l] face [ix, iy-l]

[ix, iy-l]

East (vertical)

face

[ix, iy]

* Thus...

* Active cells are indexed as Ctr[ix] [iy], where

* ixmin <= ix <- ixmax, iymin <= iy <= iymax.

* Acitve vertical interfaces are indexed as VF[ix] [iy], where

* ixmin-I <= ix <= ixmax, iymin <= iy <= iymax.

* Acitve horizontal interfaces are indexed as HF[ix] [iy], where

* ixmin <= ix <- ixmax, iymin-i <= iy <= iymax.

* Active vertices are indexed as Vtx[ix] [iy], where

* ixmin-i <= ix <= ixmax, iymin-l <= iy <= iymax.

* Space for ghost cells is available outside these ranges but

* within the dimensioned ranges

* 0 <m ix <= nxdim-l, 0 <= iy <= nydim.
.

. */
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/*

* Indexing Macros

* These macros should make indexing over the A,B,C,D vertices

* and over the North, South, East,West faces more readable.

* NOTE that they are defined with respect to the [ix, iy] cell.

*/

/* VERTICES */

#define ixA (ix)

#define iyA (iy-l)

#define ixB (ix)

#define iyB (iy)

#define ixC (ix-l)

#define iyC (iy)

#define ixD (ix-l)

#define iyD (iy-l)

/* CELL FACES */

#define ixN (ix)

#define iyN (iy)

#define ixS (ix)

#define iyS (iy-l)

#define ixE (ix)

#define iyE (iy)

#define ixW (ix-l)

#define iyW (iy)
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/*

* Multi-block MACROs

* These are used in the boundary condition routines when

* copying data fr0m multi-block buffers to ghost-cells.

*/

#ifdef MULTI BLOCK

/*

* Directions that neighbors can have

"* when to direction is NE, SE, NW, SW then

* to direction = mod(from_direction+2,4) + 4

* when to direction is N, S, E, W then

* to direction = mod(from__direction+2,4)m

* Here is a stencil ...

* N

* 1
* I
* W --+-- E

* I
* I
* S

*/

(i-l, j

and the indexing equivalent

) -- (i

(i ,j+l)
i
I
,j ) -- (i+l,J

I
I

(i ,j-l)

#define NORTH 0

#define EAST 1

#define SOUTH 2

#define WEST 3

#define NORTHWEST 4

#define SOUTHWEST 5

#define NORTHEAST 7

#define SOUTHEAST 6

#endif
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i-l,j+l
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.._--- +

i,j+_
0
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i+l,j+l
0

B i,j C
........ _. - dt-
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a VerteX; ,,Fl,_ite'volume
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A.Ctr[i][j]

A.Ctr

K2_-_ ' I

II

m _

:i

c 'r
i
i

I I
.._

II
Q.) "_

I

-4

,-,4

7
--!

J

L
!

I

II

J = jmin

j=O

Figure 2: Storage of the data for the cell centres. Active cells are denoted by "+". Ghost
cells are unmarked.
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O

Figure 3: Secondary-cell geometry.
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if (u* > O) then

The contact-discontinuity has moved to the right

and the interface state is determined from the

L and L* states.

if (P* > PL) then

The left-moving wave is a shock.

if (W8 L __ O) then

All waves have moved to the right.

Interface state is equal to L.
else

Interface state is equal to L*.
endif

else

The left-moving wave is a rarefaction.

if (UL -- aL > O) then

All waves have moved to the right.

Interface state is equal to L.

elseif (u_ - a_, > O) then
The rarefaction straddles the interface.

Interpolate the interface state from

states L and L'.

else

The entire rarefaction moved to the

left of the interface,

Interface state is equal to L*.

endif

endif

else

The contact discontinuity has moved to the left

and the interface state is determined from the

R and R* states in a similar manner...

endif

Figure 4: Interpolation logic for the Riemann solver.
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North Boundary j = j,,,_

C' i,j B'

_

--0
I
I

D' i,j A'

East Boundary i -- im_

C' _B'

I
I

t i,j
I
!

o---- _A'
D'

C'__ _ -°B'

I
I

/,J I
I

D'

South Boundary j = j_i. - 1

West Boundary i = iml. - 1

Figure 5: Definition of the secondary (half-)cells along the boundaries. The i,j vertex is
identified in each case.
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Figure 6: Flow state in the one-dimensionM shock tube at t = 6.03 x 10-3s. Symbols denote

the finite-volume solution, solid lines denote the exact solution.
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Figure 7: Flow state in the high temperature shock tube at t = 1.25 x 10-33.
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Figure 8: Flow over a wedge with a double Mach reflection: (a) flow domain; (b) 200 × 100

mesh connecting the cell centres.
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Figure 9: Density contours at two time instants for the double Mach reflection case.
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(b)

0

Region c/c_

0 1,00

i 4.41

o 7.16

3 5.08

a 7.60

b 8.03

c 8.47

d 8,91

e 9.35

f 9.78

g 10,22

Figure 10: Comparison of (a) the density contours for the present solution at t =,7

(b) an interferogram from figure (13a) in Olaz et al (1986).
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(b)

0.50 0.75
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|

Figure 11" Boundary layer along a flat plate with M = 2.0 and ReL = 1.65 x lOS: (a) flow

domain; (b) 100 x 100 mesh joining the cell centres.
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Figure 12: Pressure contours at t = 7.0 x 10-3s.
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Figure 13: Comparison of the present solution (symbols) with a spectral solution (solid line):

(a) z-velocity profile at x = 0.9415m (i=97); (b) temperature profile at the same station.
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Figure 14: Boundary layer along a flat plate with M = 2.0 and ReL ---- 1.65 × 105: (a) 50 × 50
mesh joining cell centres; (b) Pressure contours at t = 8.0 × 10-3s. w
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Figure 15: Comparison of the present solution (symbols) with a spectral solution (solid line):

(a) z-velocity profile at z = 0.916m (i=48); (b) temperature profile at the same station.
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Figure 16: M = 1.5 inviscid flow over a 20 ° cone: (a) flow geometry; (b) 100 x 100 mesh

joining cell centres.
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Figure 17: Early evoIution of the density fleld over the cone.

59



(a) ]

0.75

y, m

0.50

0.25

1.00

Level p

F 1.509E5

E 1.472E5

D 1.436E5

C 1.399E5

B 1.362E5

A 1.326E5

9 1.289E5

8 1.252E5

7 1.215E5

6 1.179E5

5 1A42E$

4 1.105E5

3 1,069E5

2 1.032E5

1 9.951E4

0.25 0.50 0.75 1.00 1.25

X, m

e = 5.Ores (u)

0.75

y, m

0.50

0.25

Level rho

F 4.176E-I

E 4,099E-1

D 4.023E-1

C 3.946E-I

B 3.870E-1

A 3.793E-t

9 3.717E-I

8 3.640E-I

7 3.564E-1

6 3.487E-1

5 3.411E-1

4 3.334E-t

3 3.258E-1

2 3.181E-1

I 3.105E-1

0.25 0.50 0.75 1.00 1.25

X, m
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Figure 22: Sphere in a Mach 12 flow: (a) flow geometry; (b) mesh joining cell centres.
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Figure 23: Evolution of the density field around the sphere for an inviscid simulation: (a)

Case 1, t = 8.66 x 10-%; (b) Case 1, t = 5.47 x 10-Ss. "+" denotes the experimental

correlation.

65



0.01 O0

0.0050

y_ rn

0.0000

-0.0050

-0.0100

I

-0.010 - 0.000 -0.010 -0.000

X_ m

Figure 24: Density field around the sphere for two viscous simulations with tangency

boundary conditions: (a) Case 2, t - 3.76 x 10-%, first-order interpolation; (b) Case 3,

t = 4.01 x 10-%, hlgh-order MUSCL interpolation.
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Figure 25: Flow properties for the cells adjacent to the (y = 0) stagnation line for case 3:

(a) density; (b) pressure.
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Figure 26: Cylindrical- and cartesian-coordinates.
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Figure 27: Axisymmetric finite-volume cell.
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